Penerapan PCA dan Algoritma Clustering untuk Analisis Mutu Perguruan Tinggi di LLDIKTI Wilayah IV

Authors

  • Resa Rianti Universitas Logistik dan Bisnis Internasional
  • Roni Andarsyah Universitas Logistik Dan Bisnis Internasional,
  • Rolly Maulana Awangga Universitas Logistik Dan Bisnis Internasional https://orcid.org/0000-0001-5530-9505

DOI:

https://doi.org/10.25134/ilkom.v18i2.211

Keywords:

SPMI, PCA, K-Means, Mean Shift, DBSCAN

Abstract

The Internal Quality Assurance System (SPMI) is a guideline used by universities to assess the quality of performance and implementation of higher education internally. SPMI is very important to be considered by universities in order to compete positively with other universities, both at home and abroad, as well as to improve the management and implementation of higher education in the institution. In this study, three machine learning algorithms are applied, namely K- Means, Mean Shift, and DBSCAN, to cluster SPMI data. The methods used include Principal Component Analysis (PCA) to reduce data complexity without losing important information, and three clustering algorithms to group universities based on similarity of quality indicators. The K-Means algorithm clusters data based on distance to the nearest centroid, Mean Shift identifies clusters based on data density, and DBSCAN clusters data based on density and is able to handle outliers and irregularly shaped clusters. The results show that Mean Shift produces the best cluster with Silhouette Score 0.566, Davies- Bouldin Index 0.648, and Calinski-Harabasz Index 971.07. The K-Means algorithm provides quite good results with Silhouette Score 0.466, Davies-Bouldin Index 0.757, and Calinski-Harabasz Index 757.06. Meanwhile, DBSCAN has lower performance with Silhouette Score 0.216, Davies-Bouldin Index 1.045, and Calinski-Harabasz Index 105.67. This research provides the results of identifying universities that need special attention and helps in strategic planning for quality improvement so that they can carry out guidance more effectively and contribute to the development of a quality assurance system for higher education in Indonesia.

Downloads

Download data is not yet available.

References

R. Sanjaya and R. N. Handayani, “PENGEMBANGAN SISTEM INFORMASI PENJAMINAN MUTU (SIMANTU) LLDIKTI WILAYAH IV,” vol. 03, 2021.

M. Fadhli, “SISTEM PENJAMINAN MUTU INTERNAL DAN EKSTERNAL PADA LEMBAGA PENDIDIKAN TINGGI,” Jurnal Manajemen Pendidikan Islam, vol. 04, no. 02, pp. 171–183, 2020, doi: 10.33650/al-tanzim.v4i2.

V. Sriviana Fatmawaty and I. Riadi, “JURNAL MEDIA INFORMATIKA BUDIDARMA Klasterisasi Perguruan Tinggi LLDIKTI V Berdasarkan Indikator Kinerja Utama dan PDDIKTI Menggunakan K-Means Clustering,” 2024, doi: 10.30865/mib.v8i2.7497.

S. Sirsikar and K. Wankhede, “Comparison of clustering algorithms to design new clustering approach,” in Procedia Computer Science, Elsevier B.V., 2015, pp. 147–154. doi: 10.1016/j.procs.2015.04.238.

S. Anastassia Amellia Kharis and A. Haqqi Anna Zili, “Learning Analytics dan Educational Data Mining pada Data Pendidikan,” Jurnal Riset Pembelajaran Matematika Sekolah, vol. 6, 2022.

S. Anastassia Amellia Kharis and A. Haqqi Anna Zili, “Learning Analytics dan Educational Data Mining pada Data Pendidikan,” Jurnal Riset Pembelajaran Matematika Sekolah, vol. 6, 2022.

B. Untung Saputra, W. Andriani, and A. Batik Pesisir, “PENGENALAN MOTIF BATIK PESISIR PULAU JAWA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK.” [Online]. Available: https://journal.fkom.uniku.ac.id/ilkom

L. Zhang, A. U. Quddus, E. Katranaras, D. Wübben, Y. Qi, and R. Tafazolli, “Performance Analysis and Optimal Cooperative Cluster Size for Randomly Distributed Small Cells Under Cloud RAN,” IEEE Access, vol. 4, pp. 1925–1939, 2016, doi: 10.1109/ACCESS.2016.2550758.

K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.

A. Suryadibrata and J. C. Young, “Visualisasi Algoritma sebagai Sarana Pembelajaran K-Means Clustering,” ULTIMATICS, vol. XII, no. 1, 2020.

C. Cariou, S. Le Moan, and K. Chehdi, “A Novel Mean-Shift Algorithm for Data Clustering,” IEEE Access, vol. 10, pp. 14575–14585, 2022, doi: 10.1109/ACCESS.2022.3147951.

R. G. Creţulescu, D. I. Morariu, M. Breazu, and D. Volovici, “DBSCAN Algorithm for Document Clustering,” International Journal of Advanced Statistics and IT&C for Economics and Life Sciences, vol. 9, no. 1, pp. 58–66, Jun. 2019, doi: 10.2478/ijasitels-2019-0007.

I. Firman Ashari, E. Dwi Nugroho, R. Baraku, I. N. Yanda, and R. Liwardana, “Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta,” 2023. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC

A. R. Sinaga, “Variabel Non Akademik Untuk Memprediksi Prestasi Siswa Dengan Data Mining Menggunakan Metoda Naïve Bayes.” [Online]. Available: https://journal.fkom.uniku.ac.id/ilkom

C. Yuan and H. Yang, “Research on K-Value Selection Method of K-Means Clustering Algorithm,” J (Basel), vol. 2, no. 2, pp. 226–235, Jun. 2019, doi: 10.3390/j2020016.

A. S. Ritonga and I. Muhandhis, “TEKNIK DATA MINING UNTUK MENGKLASIFIKASIKAN DATA ULASAN DESTINASI WISATA MENGGUNAKAN REDUKSI DATA PRINCIPAL COMPONENT ANALYSIS (PCA).”

T. A. Cinderatama et al., “Implementasi Metode K-Means, Dbscan, dan Meanshift Untuk Analisis Jenis Ancaman Jaringan Pada Intrusion Detection System,” vol. 7, no. 1, p. 2022.

J. Homepage et al., “MALCOM: Indonesian Journal of Machine Learning and Computer Science Clustering Electricity Distribution Data Using Density-Based Spatial Clustering of Applications With Noise (DBSCAN) Algorithm Pengelompokan Data Pendistribusian Listrik Menggunakan Algoritma Density Based Spatial Clustering of Application With Noise (DBSCAN),” vol. 4, no. 3, pp. 1024–1033, 2024, doi: 10.57152/malcom.v4i2.1426.

M. Á. Carreira-Perpiñán, “A review of mean-shift algorithms for clustering,” Mar. 2015, [Online]. Available: http://arxiv.org/abs/1503.00687

Downloads

Published

20-07-2024

How to Cite

Rianti, R., Andarsyah, R., & Awangga, R. M. (2024). Penerapan PCA dan Algoritma Clustering untuk Analisis Mutu Perguruan Tinggi di LLDIKTI Wilayah IV. NUANSA INFORMATIKA, 18(2), 67–77. https://doi.org/10.25134/ilkom.v18i2.211