Forecasting International Tourist Arrivals with SARIMA and Triple Exponential Smoothing for Post-Pandemic Tourism Recovery

Authors

  • Wikasanti Dwi Rahayu Wika UIN Syech M.Jmail Djambek Bukittinggi
  • Uqwatul Alma Wizsa UIN Sjech M.Djamil Djambek Bukittinggi
  • Aidina Fitra Universitas Andalas

DOI:

https://doi.org/10.25134/ilkom.v19i1.312

Keywords:

Holt-Winters, International Tourist, Post-Pandemic, SARIMA

Abstract

The Covid-19 pandemic has significantly impacted the tourism sector, leading to a drastic decline in regional revenue derived from this industry. To accelerate the recovery of the tourism sector, reliable forecasting methods are required to estimate tourist arrivals. This paper presents the use of time series SARIMA and Triple Exponential Smoothing (Holt-Winters) methods to predict the number of international tourist arrivals in the post-pandemic period. The analysis reveals that the SARIMA method with ARIMA (2,0,1)(1,0,1)₅ parameters, which accounts for seasonal trends over a five-month period, provides the most accurate predictions. Evaluation is conducted using MAPE, MAE, and RMSE value. The predictions generated by these methods are expected to assist governments and tourism-related industries in developing promotion strategies, infrastructure planning, and optimal resource allocation.

Downloads

Download data is not yet available.

References

UNWTO, “World Tourism Barometer July 2022,” vol. 20, no. 4, pp. 1–6, 2022.

T. Sugiyarto, V. C. Wulandari, H. Wulandari, R. Indriani, and A. Ruslani, “Statistik Wisatawan Nusantara 2023,” Biro Pus. Statsitik, vol. 6, p. 142, 2024.

B. P. Statistik and K. M. Barat, “Perkembangan Pariwisata dan Transportasi Manggarai Barat Desember 2023,” no. 01, pp. 1–15, 2024.

L.-C. Zhang, “On provision of UK neighbourhood population statistics beyond 2021,” pp. 1–21, 2021, [Online]. Available: http://arxiv.org/abs/2111.03100

M. Geurts, G. E. P. Box, and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Fifth., vol. 14, no. 2. Canada: John Wiley, 1977. doi: 10.2307/3150485.

A. G. Assaf and A. Josiassen, “Identifying and Ranking the Determinants of Tourism Performance: A Global Investigation,” J. Travel Res., vol. 51, no. 4, pp. 388–399, 2012, doi: 10.1177/0047287511426337.

C. Goh and R. Law, “Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention,” Tour. Manag., vol. 23, no. 5, pp. 499–510, Oct. 2002, doi: 10.1016/S0261-5177(02)00009-2.

C. C. Holt, “Forecasting seasonals and trends by exponentially weighted moving averages,” Int. J. Forecast., vol. 20, no. 1, pp. 5–10, Jan. 2004, doi: 10.1016/j.ijforecast.2003.09.015.

P. F. A. Tambuwun, N. Nainggolan, and Y. A. . Langi, “Peramalan Banyaknya Penumpang Bandar Udara Internasional Sam Ratulangi Manado Dengan Metode Winter’s Exponential Smoothing dan Seasonal ARIMA,” d’Cartesian, vol. 12, no. 1, pp. 14–20, Mar. 2023, doi: 10.35799/dc.12.1.2023.48066.

S. M. Hossen, M. T. Ismail, M. I. Tabash, and S. Anagreh, “Do Tourist Arrivals in Bangladesh Depend on Seasonality in Humidity? a Sarima and Sancova Approach,” Geoj. Tour. Geosites , vol. 41, no. 2, pp. 606–613, 2022, doi: 10.30892/GTG.41235-869.

U. A. Wizsa, W. D. Rahayu, and S. Susanti, “Forecasting of Indonesia’S Post-Covid-19 Export Value Using Sarima,” J. Stat. Univ. Muhammadiyah Semarang, vol. 10, no. 2, p. 13, 2022, doi: 10.26714/jsunimus.10.2.2022.13-24.

G. K. & C. D. Krishna KMJ, Vasagam SN, “Identification of SARIMA as a Model for Forecasting Indian Leather Export,” , Int. J. Res. Manag., vol. 6, no. 3, pp. 18–30, 2013.

V. E. M. Makridakis, Spyros, Steven C. Wheelwright, Metode dan aplikasi peramalan, 1st ed. Jakarta: Erlangga, 1999.

R. . Bowerman, B.L and O’Connell, Time Series Forecasting, Unified Concepts and Computer Implementation. Buston USA: Duxbury Press, 1987.

X. Zhang, Y. Pang, M. Cui, L. Stallones, and H. Xiang, “Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model,” Ann. Epidemiol., vol. 25, no. 2, pp. 101–106, 2015, doi: 10.1016/j.annepidem.2014.10.015.

A. G. Barnston, “Correspondence among the Correlation, RMSE, and Heidke Forecast Verification Measures; Refinement of the Heidke Score,” Weather Forecast., vol. 7, no. 4, pp. 699–709, Dec. 1992, doi: 10.1175/1520-0434(1992)007<0699:CATCRA>2.0.CO;2.

C. Cristino et al., “Optimization strategies in SEI: An analysis of SARIMA and additive Holt-Winters models,” in 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), IEEE, Jun. 2024, pp. 1327–1332. doi: 10.1109/MELECON56669.2024.10608496.

T. Musa, A. M. Usman, and H. D. Garba, “Modelling and Forecasting Nigeria’s Tax Revenue: A Comparative Analysis of SARIMA and Holt-Winters Models,” UMYU Sci., vol. 3, no. 3, Jul. 2024, doi: 10.56919/usci.2433.014.

J. W. Denton, How good are neural networks for causal forecasting. J. Bus. Forecast. 1995.

A. S. Azad et al., “Water Level Prediction through Hybrid SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir Case Study,” Sustainability, vol. 14, no. 3, p. 1843, Feb. 2022, doi: 10.3390/su14031843.

Mohammad Kaiman Maulidani, Darsanto, and Muhammad Edi Iswanto, “Rancang Bangun Aplikasi Informasi Wisata Kabupaten Indramayu Berbasis Mobile Android,” NUANSA Inform., vol. 18, no. 2, pp. 128–144, Jul. 2024, doi: 10.25134/ilkom.v18i2.214.

D. Anastasya, S. Fahri, and S. Situmorang, “Implementasi Metode Convolutional Neural Network (CNN) Dalam Klasifikasi Motif Batik.,” NUANSA Inform., vol. 18, no. 1, pp. 1–5, Jan. 2024, doi: 10.25134/ilkom.v18i1.21.

F. LIa Dwi Cahyanti, Elly Firasari, and Umi Khultsum, “Sistem Informasi Penjualan Berbasis WEB Pada UKM Rukun Makmur Tlingsing,” NUANSA Inform., vol. 18, no. 2, pp. 11–18, Jul. 2024, doi: 10.25134/ilkom.v18i2.126.

Downloads

Published

31-01-2025

How to Cite

Wika, W. D. R., Uqwatul Alma Wizsa, & Aidina Fitra. (2025). Forecasting International Tourist Arrivals with SARIMA and Triple Exponential Smoothing for Post-Pandemic Tourism Recovery. NUANSA INFORMATIKA, 19(1), 82–89. https://doi.org/10.25134/ilkom.v19i1.312