PENGENALAN MOTIF BATIK PESISIR PULAU JAWA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK

Authors

  • Bagus Untung Saputra STMIK Tegal
  • Gunawan STMIK Tegal
  • Wresti Andriani STMIK Tegal

DOI:

https://doi.org/10.25134/ilkom.v17i2.32

Keywords:

identification, coast of java batik, convolutional neural network

Abstract

Coastal Batik is made outside of Solo and Yogyakarta. The use of the term "coastal" is due to the majority of batik production being located in the northern coast of Java, such as Indramayu, Cirebon, Pekalongan, Lasem, and others. Coastal batik is characterized by flexible color selection and patterns, influenced by foreign influences, particularly after the introduction of Islam in the 16th century. The Convolutional Neural Network (CNN) method is commonly used in classifying digital image data. Neurons in CNN are represented in a two-dimensional form, differing in linear function and weight parameters. The CNN extraction process consists of hidden layers, including convolutional, pooling, and ReLU (activation function) layers. The evaluation results of the Convolutional Neural Network model show that it can perform classification and recognize coastal batik images of Java Island, achieving the best results in the first scenario with a training data ratio of 70% and testing data ratio of 30%, resulting in an accuracy of 83%. For future research, it is recommended to increase the number of batik images and capture them directly, while incorporating segmentation or extraction features to measure efficiency and accuracy levels. This will help obtain better results in recognizing the characteristics of coastal batik in Java Island.

Downloads

Download data is not yet available.

References

Jumariah, “Nilai Simbolis Dan Filosofi Kain Batik ‘Sido Mukti’ Dalam Kehidupan,” Jurnal Socia Akademika Volume 5, No. 1, 20 Mei 2019, vol. 5, no. 1, 2019.

R. A. S. Suminto, “BATIK MADURA: Menilik Ciri Khas dan Makna Filosofinya,” CORAK, vol. 4, no. 1, 2015, doi: 10.24821/corak.v4i1.2356.

L. Indriani, “Makna Filosofi dan cerita di Balik Berbagai Motif Batik - seri Kawung,” Museumbatik.com. 2015.

D. I. Aryani and E. Djakaria, “Penerapan Motif Batik Pesisir Utara Jawa pada Perhiasan Logam (Studi Kasus: Warak Ngendog),” Jurnal Desain Idea: Jurnal Desain Produk Industri Institut Teknologi Sepuluh Nopember Surabaya, vol. 20, no. 2, 2021, doi: 10.12962/iptek_desain.v20i2.11605.

Y. MZ, E. Utami, and A. Amborowati, “Temu Kembali Citra Batik Pesisir,” Informasi Interaktif, vol. 2, no. 1, 2017.

V. S. Moertini and B. Sitohang, “Algorithms of Clustering and Classifying Batik Images Based on Color, Contrast and Motif,” ITB Journal of Engineering Science, vol. 37, no. 2, 2005, doi: 10.5614/itbj.eng.sci.2005.37.2.5.

K. A. Nugraha, W. Hapsari, and N. A. Haryono, “Analisis Tekstur Pada Citra Motif Batik Untuk Klasifikasi K-NN,” Informatika, vol. 10, no. 2, 2014.

A. Kurniadi, “Implementasi Convolutional Neural Network Untuk Klasifikasi Varietas Pada Citra Daun Sawi Menggunakan Keras,” DoubleClick: Journal of Computer and Information Technology, vol. 4, no. 1, 2020, doi: 10.25273/doubleclick.v4i1.5812.

F. Felix, S. Faisal, T. F. M. Butarbutar, and P. Sirait, “Implementasi CNN dan SVM untuk Identifikasi Penyakit Tomat via Daun,” Jurnal SIFO Mikroskil, vol. 20, no. 2, 2019, doi: 10.55601/jsm.v20i2.670.

W. S. Eka Putra, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” Jurnal Teknik ITS, vol. 5, no. 1, 2016, doi: 10.12962/j23373539.v5i1.15696.

E. N. Arrofiqoh and H. Harintaka, “IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI TANAMAN PADA CITRA RESOLUSI TINGGI,” GEOMATIKA, vol. 24, no. 2, 2018, doi: 10.24895/jig.2018.24-2.810.

M. H. Romario, E. Ihsanto, and T. M. Kadarina, “Sistem Hitung dan Klasifikasi Objek dengan Metode Convolutional Neural Network,” Jurnal Teknologi Elektro, vol. 11, no. 2, 2020, doi: 10.22441/jte.2020.v11i2.007.

I. M. Ihdal, “KLASIFIKASI KAIN KHAS BATIK DAN KAIN KHAS SASIRANGAN DENGAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK,” Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM), vol. 6, no. 1, 2021, doi: 10.20527/jtiulm.v6i1.62.

S. H. Wang, S. C. Satapathy, D. Anderson, S. X. Chen, and Y. D. Zhang, “Deep Fractional Max Pooling Neural Network for COVID-19 Recognition,” Front Public Health, vol. 9, 2021, doi: 10.3389/fpubh.2021.726144.

N. K. Fitriyani and A. D. Hartanto, “Analisis Sentimen Terhadap Tokoh Publik Menggunakan Support Vector Machine,” MEANS (Media Informasi Analisa dan Sistem), 2020, doi: 10.54367/means.v5i1.615.

Downloads

Published

12-07-2023

How to Cite

Bagus Untung Saputra, Gunawan, & Wresti Andriani. (2023). PENGENALAN MOTIF BATIK PESISIR PULAU JAWA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK. NUANSA INFORMATIKA, 17(2), 119–125. https://doi.org/10.25134/ilkom.v17i2.32