Implementasi Metode Convolutional Neural Network (CNN) Dalam Klasifikasi Motif Batik.
DOI:
https://doi.org/10.25134/ilkom.v18i1.21Keywords:
batik, Convolutional Neural Network, Effisien Nett, klasifikasiAbstract
Indonesia is renowned for its diverse ethnicities, each contributing to a culturally rich mosaic. Among the distinctive regional traits, batik stands out prominently, evolving uniquely in each part of the country. However, the diversity in batik designs often confuses people trying to identify the region of origin due to similarities in patterns. Deciphering these unique batik motifs typically requires specialized knowledge, particularly from individuals well-versed in the art of batik. Reviews suggest that employing pattern recognition methods is an effective way to tackle this challenge. In today's technological landscape, various methods have emerged to aid in recognizing fabric motifs. This study utilizes the Convolutional Neural Network (CNN) method with the Efficient Net-B0 architecture. The tests conducted to identify batik motifs using this approach yielded a highest accuracy result of 79.62% for the test data and an accuracy validation result of 73.33%. These findings underscore the potential of advanced technologies, specifically the CNN with Efficient Net-B0 architecture, in accurately discerning and distinguishing batik motifs.
Downloads
References
P. A. Wicaksana, I. Made Sudarma, and D. C. Khrisne, “Putu Aryasuta Wicaksana, I Made Sudarma, Duman Care Khrisne PENGENALAN POLA MOTIF KAIN TENUN GRINGSING MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK DENGAN MODEL ARSITEKTUR ALEXNET,” 2019.
S. Yulia Riska and N. Rusanti, “ANALISIS SISTEM UNTUK DETEKSI TEPI MOTIF BATIK MENGGUNAKAN ANT COLONY OPTIMIZATION,” 2019. [Online]. Available: http://kcv.if.its.ac.id
L. Maulana Hakim, “Batik Sebagai Warisan Budaya Bangsa dan Nation Brand Indonesia,” 2018.
A. Amaris Trixie, “Trixie Penggunaan Warisan Budaya Batik Sebagai Identitas Bangsa Indonesia FILOSOFI MOTIF BATIK SEBAGAI IDENTITAS BANGSA INDONESIA,” 2020.
J. Kecerdasan Buatan et al., “Vol. X No.X Tahun 20XX Implementasi Algoritma Convolutional Neural Networks (CNN) Untuk Klasifikasi Batik”, [Online]. Available: https://ejournal.unuja.ac.id/index.php/core
M. Muna and E. Widodo, “IMPLEMENTASI DEEP LEARNING UNTUK KLASIFIKASI GAMBAR MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN) PADA BATIK SASAMBO,” pp. 335–340, 2021, doi: 10.30598/PattimuraSci.2021.KNMXX.
F. Nurona Cahya et al., “SISTEMASI: Jurnal Sistem Informasi Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network ( CNN).” [Online]. Available: http://sistemasi.ftik.unisi.ac.id
N. A. Sundari, R. Magladena, and S. Saidah, “Klasifikasi Jenis Kulit Wajah Menggunakan Metode Covolutional Neural Network (CNN) Efficientnet-B0 Skin Classification System Using Convolutional Neural Network (CNN) EfficientNet-B0,” 2022.
W. R. PERDANI, R. MAGDALENA, and N. K. CAECAR PRATIWI, “Deep Learning untuk Klasifikasi Glaukoma dengan menggunakan Arsitektur EfficientNet,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 2, p. 322, Apr. 2022, doi: 10.26760/elkomika.v10i2.322.
I. wayan S. E.P, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101,” JURNAL TEKNIK ITS, vol. 5, no. 1, pp. 65–69, 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 disty anastasya, Syahrul Fahri, Stefania Situmorang
This work is licensed under a Creative Commons Attribution 4.0 International License.