Klasifikasi Kebutuhan Dokter untuk Kesejahteraan Masyarakat Menggunakan ANFIS
DOI:
https://doi.org/10.25134/ilkom.v18i2.204Keywords:
ANFIS, klasifikasi, Tenaga Kesehatan, Kesejahteraan MasyarakatAbstract
In social life, the need for medical workers is different in each region, because the population varies. If doctors cannot treat a large enough number of patients in an area, it can have various impacts on society, such as contracting dangerous diseases if not treated as soon as possible. The effect will be a decline in people's standard of living. By classifying the need for the number of health workers (doctors) relative to the population, the level of welfare in an area can be obtained. To assist in optimizing health workers (doctors) they can use fuzzy logic and ANFIS (Adaptive Neuro Fuzzy Inference System). By using ANFIS, it is hoped that we can find the optimal value for the classification of health workers that will be needed in each region. In the ANFIS test, the RMSE error value was 0.2698 and the first accuracy value was 73%. Then by adding a membership function, an RMSE error value of 0.17698 was obtained, this second accuracy value increased by 10% to 83%. By using the ANFIS method to classify health workers according to different population sizes in each region, you can measure the level of community welfare well.
Downloads
References
R. A. N. Rahma, I. Suryani dan Y. Sari, “Penerapan Logika Fuzzy Dalam Menentukan Jumlah Peserta BPJS Kesehatan Menggunakan Fuzzy Inference System Sugeno,” Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, vol. 1, no. 3, p. 183, 2020.
E. Purwaningsih, “Kebijakan Terkait Krisis Kesehatan: Analisa Kebutuhan Tenaga Kesehatan Selama Pandemi Covid-19 di Indonesia,” Jurnal Kebijakan Kesehatan Indonesia, vol. 12, no. 2, p. 67, 2023.
B. Tambaip, A. P. Tjilen dan Y. Ohoiwutun, “Peran Fasilitas Kesehatan Untuk Kesejahteraan Masyarakat,” Jurnal Kebijakan Publik, vol. 14, no. 2, p. 189, 2023.
L. Susanti, “Analisis Kepuasan Pelanggan Terhadap Kualitas Produk Dan Pelayanan Dengan Menggunakan Komparasi Fuzzy Inference System,” Jurnal Sosial dan Teknologi, vol. 2, no. 4, p. 380, 2022.
B. Santoso, A. I. S. Azis dan Z. , Machine Learning & Reasoning Fuzzy Logic Algoritma, Manual, Matlab, & Rapid Miner, Yogyakarta: CV Budi Utama, 2019.
M. A. Muzani, E. Utami dan A. D. Hartanto, “Optimasi Anfis Untuk Prediksi Data Time Series,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 3, p. 2450, 2022.
K. B. Wjiaya, Y. M. S. dan S. , “Penerapan Logika ANFIS Sistem Penilaian Kinerja DosenPada Tri Dharmadan Perilaku Kerja,” Jurnal Sistem Informasi Bisnis, vol. 12, no. 1, p. 59, 2022.
A. R. Firdaus, M. Luthfi and M. F. Amrulloh, "Klasifikasi Jenis Tanaman Kelengkeng Berdasarkan Ciri Tekstur Daun Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS)," Jurnal Keilmuan dan Aplikasi Teknik Informatika, vol. 14, no. 1, p. 29, 2022.
N. Almumtazah, M. S. Kiromi and N. Ulinnuha, "Klasifikasi Alzheimer Berdasarkan Data Citra MRI Otak Menggunakan FCM dan ANFIS," Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 3, p. 613, 2023.
I. Afriliana, A. H. Sulasmoro and A. Sofyan, "Klasifikasi Kinerja Pengajaran Dosen Menggunakan Metode ANFIS Sebagai Upaya Peningkatan Sistem Penajminan Muitu Internal (SPMI)," Journal of Innovation Information Technology and Aplication, vol. 1, no. 1, p. 68, 2019.
N. M. Sunariadi, S. N. Fadilah and D. C. R. Novitasari, "Analisis Resiko Kanker Serviks Menggunakan PCA-ANFIS Berdasarkan Historical Medical Record," Jurnal Media Informatika Budidarma, vol. 6, no. 3, p. 1341, 2022.
A. Fadhli, "Analisis Perencanaan Persediaan Bahan Baku Air Conditioner (Tube Assy) Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS) Pada PT Pratika Nugraha Jaya," Scientific Jourrnal of Industrial Engineering, vol. 3, no. 2, p. 72, 2022.
W. D. Permana, I. F. Astuti dan H. R. Hatta, “Penentuan Keputusan Pemberian Pinjaman Kredit Usaha Rakyat,” Jurnal Ilmiah Ilmu Komputer, vol. 15, no. 2, p. 677, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nuansa Informatika
This work is licensed under a Creative Commons Attribution 4.0 International License.