ANALISIS SENTIMEN PELAKSANAAN KULIAH ONLINE MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE
DOI:
https://doi.org/10.25134/ilkom.v17i2.11Keywords:
algorithm, lectures, onlineAbstract
This writing aims to assess the satisfaction of students regarding the implementation of online lectures, categorized into three classes: positive, neutral, and negative. Data collection was conducted using Twint from the social media platform Twitter, with a total of 25,000 tweets. The data processing process to determine sentiment analysis utilized the support vector machine algorithm. With this algorithm, the obtained results show an accuracy rate of 76.86% for positive sentiment. The precision is 0.49, recall is 0.53, and the F1 score is 0.51
Downloads
References
Arifin, O., & Sasongko, T. B. , 2018, ANALISA PERBANDINGAN TINGKAT PERFORMANSI METODE SUPPORT VECTOR MACHINE DAN NAïVE BAYES CLASSIFIER UNTUK KLASIFIKASI JALUR MINAT SMA. Seminar Nasional Teknologi Informasi dan Multimedia 2018.
Fiska, R. R. (2017). Penerapan Teknik Data Mining dengan Metode Support Vector Machine (SVM) untuk Memprediksi Siswa yang Berpeluang Drop Out (Studi Kasus di SMKN 1 Sutera). SATIN.
Jumeilah, F. S., 2017, Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian. JURNAL RESTI, 19-25.
Mutawalli, L., Asri, M. T., & Bagye, W., 2019, KLASIFIKASI TEKS SOSIAL MEDIA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (Studi Kasus Penusukan Wiranto). JIRE.
Samsir, Ambiyar, Verawardina, U., Edi, F., & Watrianthos, R., 2020, Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naive Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 157-163.
Setiawan, H., Utami, E., & Sundarmawan, 2021, Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Support Vector Machine dan Naive Bayes. Jurnal Komtika.
Sitanayah, V. K., Iriani, A., & Purnomo, H. D., 2020, Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swam Optimzation. Jurnal Nasional Teknik Elektro dan Teknologi Informasi.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nuansa Informatika
This work is licensed under a Creative Commons Attribution 4.0 International License.