Variabel Non Akademik Untuk Memprediksi Prestasi Siswa Dengan Data Mining Menggunakan Metoda Naïve Bayes

Authors

  • Arnold Ropen Sinaga -

DOI:

https://doi.org/10.25134/ilkom.v17i2.26

Keywords:

Data Mining,, Naive Bayes, , Achievment

Abstract

The aim of this research is to measure not only the accuracy rate but also the precision result and the recall of the data mining application to predict Junior High School students’ learning outcomes based on their gender, the origin of the school, parents’ education and occupation. Determination of the students’ learning outcomes are very important in the education world. it becomes important because of the difficulty in determining the factors and variables which can affect the students’ learning outcomes.
The accurate process of the data mining can recognize and extract the pattern of knowledge in order to offer solutions to increase the education quality where it can help the students maximize their achievement.
There are some classification models in data mining: ID3 algorithm, C4.5 and Naïve Bayes which can be used to predict the students’ achievement, specifically, in Junior High School. This research uses Naïve Bayes classification mode to predict the Saint Mary Junior High School students’ achievement in order to get a better accuracy.

Downloads

Download data is not yet available.

References

Angga Raditya, Implementasi Data Mining Classification untuk Menacrai Pola Prediksi Hujan dengan Menggunakan Algoritma C4.5, Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Gunadarma

Ariana Azimah, Yudho Giri Sucahyo, Penggunaan Data Warehouse Dan Data Mining Untuk Data Akademik Sebuah Studi Kasus Pada Universitas Nasional, 2007

Daniel T, Larose, 2005. “Discovering Knowledge in Data: An Introduction to Data Mining”. John Wiley & Sons, Inc

Djamarah, Syaiful Bahri. 1994. Prestasi Belajar dan kompetensi Guru. Surabaya: Usaha Nasional.

Depdiknas. (2003). Undang-Undang Republik Indonesia Nomor 20 Tahun 2003, ten¬tang Sistem Pendidikan Nasional

Depdiknas. (1990). Peraturan Pemerintah RI No. 29, Tahun 1990, tentang Pendidikan Menengah

Han, J. And Kamber, M, 2011, “Data Mining Concept and Techniques Second Edition ”. Morgan Kauffman, San Francisco.

Iin Ernawati, 2008, “Prediksi Status Keaktifan Studi Mahasiswa dengan Algoritma C5.0 dan K-Nearest Neighbor”, Institut Pertanian Bogor

Kass G.V. (1980). An exploratory technique for investigating large quantities of cat¬egorical data. Appl. Statist. 29 No.2. pp 119-127

Kurniawan, Deny. (2008). Regresi linier (lin¬ear regression). Vienna, Austria: R Foundation for Statistical Computing

Larose, & Daniel T. (2005). Discovering knowledge in data: an introduction to data mining. USA: John Wiley and Sons

Lior Rokach, & Oded Maimon. (2005). Data mining with decision tree. World Sci¬entific Publishing Co. Pte. Ltd. Series in Machine Perception Artificial Intel¬ligence Volume 69

Nurkencana. 2005. Evaluasi Hasil Belajar Mengajar. Surabaya: Usaha Nasional.

Rainardi, Vincent, 2008, “Building Data Warehouse with Examples in SQL Server”, Springer, New York.

Slameto. 2003. Belajar dan Faktor-Faktor yang Mempengaruhinya. Jakarta: Rineka Cipta.

Tan S, Kumar P, Steinbach M. 2005. “Introduction To Data Mining”. Addison Wesley

Tu’u,Tulus.2004.Peran Disiplin pada Perilaku dan Prestasi Siswa.Jakarta:Rineka Cipta.

Sudjana, Nana. 1989. Cara Belajar Siswa Aktif-Dalam Proses Belajar Mengajar. Bandung:Sinar Baru.

Tulus. (2004). Peran disiplin pada perilaku dan prestasi siswa. Jakarta: Grasindo

Umaedi. (2001). Manajemen peningkatan mutu berbasis sekolah. Jakarta: Departemen Pendidikan Nasional Direktorat Jendral Pendidikan Dasar dan Menengah Direk¬torat Sekolah Lanjutan Tingkat Pertama

Xin Yan, & Xiao Gang Su. (2009). Linear re¬gression analysis. London: World Sci¬entific Publishing Co. Pte. Ltd., Covent Garden

https://www.gurupendidikan.co.id/pengertian-prestasi-menurut-para-ahli-beserta-macamnya/

Downloads

Published

12-07-2023

How to Cite

Sinaga, A. R. (2023). Variabel Non Akademik Untuk Memprediksi Prestasi Siswa Dengan Data Mining Menggunakan Metoda Naïve Bayes. NUANSA INFORMATIKA, 17(2), 35–41. https://doi.org/10.25134/ilkom.v17i2.26