Variabel Non Akademik Untuk Memprediksi Prestasi Siswa Dengan Data Mining Menggunakan Metoda Naïve Bayes
DOI:
https://doi.org/10.25134/ilkom.v17i2.26Keywords:
Data Mining,, Naive Bayes, , AchievmentAbstract
The aim of this research is to measure not only the accuracy rate but also the precision result and the recall of the data mining application to predict Junior High School students’ learning outcomes based on their gender, the origin of the school, parents’ education and occupation. Determination of the students’ learning outcomes are very important in the education world. it becomes important because of the difficulty in determining the factors and variables which can affect the students’ learning outcomes.
The accurate process of the data mining can recognize and extract the pattern of knowledge in order to offer solutions to increase the education quality where it can help the students maximize their achievement.
There are some classification models in data mining: ID3 algorithm, C4.5 and Naïve Bayes which can be used to predict the students’ achievement, specifically, in Junior High School. This research uses Naïve Bayes classification mode to predict the Saint Mary Junior High School students’ achievement in order to get a better accuracy.
Downloads
References
Angga Raditya, Implementasi Data Mining Classification untuk Menacrai Pola Prediksi Hujan dengan Menggunakan Algoritma C4.5, Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Gunadarma
Ariana Azimah, Yudho Giri Sucahyo, Penggunaan Data Warehouse Dan Data Mining Untuk Data Akademik Sebuah Studi Kasus Pada Universitas Nasional, 2007
Daniel T, Larose, 2005. “Discovering Knowledge in Data: An Introduction to Data Mining”. John Wiley & Sons, Inc
Djamarah, Syaiful Bahri. 1994. Prestasi Belajar dan kompetensi Guru. Surabaya: Usaha Nasional.
Depdiknas. (2003). Undang-Undang Republik Indonesia Nomor 20 Tahun 2003, ten¬tang Sistem Pendidikan Nasional
Depdiknas. (1990). Peraturan Pemerintah RI No. 29, Tahun 1990, tentang Pendidikan Menengah
Han, J. And Kamber, M, 2011, “Data Mining Concept and Techniques Second Edition ”. Morgan Kauffman, San Francisco.
Iin Ernawati, 2008, “Prediksi Status Keaktifan Studi Mahasiswa dengan Algoritma C5.0 dan K-Nearest Neighbor”, Institut Pertanian Bogor
Kass G.V. (1980). An exploratory technique for investigating large quantities of cat¬egorical data. Appl. Statist. 29 No.2. pp 119-127
Kurniawan, Deny. (2008). Regresi linier (lin¬ear regression). Vienna, Austria: R Foundation for Statistical Computing
Larose, & Daniel T. (2005). Discovering knowledge in data: an introduction to data mining. USA: John Wiley and Sons
Lior Rokach, & Oded Maimon. (2005). Data mining with decision tree. World Sci¬entific Publishing Co. Pte. Ltd. Series in Machine Perception Artificial Intel¬ligence Volume 69
Nurkencana. 2005. Evaluasi Hasil Belajar Mengajar. Surabaya: Usaha Nasional.
Rainardi, Vincent, 2008, “Building Data Warehouse with Examples in SQL Server”, Springer, New York.
Slameto. 2003. Belajar dan Faktor-Faktor yang Mempengaruhinya. Jakarta: Rineka Cipta.
Tan S, Kumar P, Steinbach M. 2005. “Introduction To Data Mining”. Addison Wesley
Tu’u,Tulus.2004.Peran Disiplin pada Perilaku dan Prestasi Siswa.Jakarta:Rineka Cipta.
Sudjana, Nana. 1989. Cara Belajar Siswa Aktif-Dalam Proses Belajar Mengajar. Bandung:Sinar Baru.
Tulus. (2004). Peran disiplin pada perilaku dan prestasi siswa. Jakarta: Grasindo
Umaedi. (2001). Manajemen peningkatan mutu berbasis sekolah. Jakarta: Departemen Pendidikan Nasional Direktorat Jendral Pendidikan Dasar dan Menengah Direk¬torat Sekolah Lanjutan Tingkat Pertama
Xin Yan, & Xiao Gang Su. (2009). Linear re¬gression analysis. London: World Sci¬entific Publishing Co. Pte. Ltd., Covent Garden
https://www.gurupendidikan.co.id/pengertian-prestasi-menurut-para-ahli-beserta-macamnya/
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 NUANSA INFORMATIKA
This work is licensed under a Creative Commons Attribution 4.0 International License.